Accepted Manuscript

Effect of Exercise on Cigarette Cravings and Ad Libitum Smoking Following Concurrent Stressors

Angela J. Fong, Stefanie De Jesus, Steven R. Bray, Harry Prapavessis

PII: S0306-4603(14)00185-3
DOI: doi: 10.1016/j.addbeh.2014.05.027
Reference: AB 4267

To appear in: Addictive Behaviors

Received date: 22 November 2013
Revised date: 27 May 2014
Accepted date: 29 May 2014

Please cite this article as: Fong, A.J., De Jesus, S., Bray, S.R. & Prapavessis, H., Effect of Exercise on Cigarette Cravings and Ad Libitum Smoking Following Concurrent Stressors, Addictive Behaviors (2014), doi: 10.1016/j.addbeh.2014.05.027

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Effect of Exercise on Cigarette Cravings and Ad Libitum Smoking Following Concurrent Stressors

Angela J. Fonga, 1, Stefanie De Jesusa, Steven R. Brayb and Harry Prapavessisa

University of Western Ontario

aSchool of Kinesiology, University of Western Ontario, Exercise and Health Psychology Laboratory, Arthur and Sonia Labatt Health Science Building, The University of Western Ontario, London, Ontario, Canada N6A 5B9. Email addresses: aj.fong@mail.utoronto.ca (A. J. Fong); sdejesus@uwo.ca (S. De Jesus); haprapave@uwo.ca (H. Prapavessis).

bDepartment of Kinesiology, McMaster University, Department of Kinesiology, Ivor Wynne Centre, McMaster University, Hamilton, Ontario, Canada L8S 1K4. Email address: sbray@mcmaster.ca (S. R. Bray).

This paper contains 25 pages, with 2 figures and 2 tables.

1 Correspondence concerning this article should be addressed to Angela J. Fong.

Present address is Department of Exercise Sciences at the University of Toronto.

University of Toronto, Department of Exercise Sciences, 55 Harbord Street, Toronto, Ontario M5S 2W6, Canada.

Email: aj.fong@mail.utoronto.ca

Tel: 1-647-965-8635
Abstract

The health consequences of smoking are well documented, yet quit rates are modest. While exercise has supported decreased cravings and withdrawal symptoms in temporarily abstinent smokers, it has yet to be applied when smokers are experiencing concurrent stressors. This study examined the effect of an acute bout of moderate intensity exercise on cravings (primary outcome) and ad libitum smoking (secondary outcome) following concurrent stressors (i.e., temporary abstinence and environmental manipulation—Stroop cognitive task + cue-elicited smoking stimuli). Twenty-five smokers (>10 cig/day; Mean age = 37.4 years) were randomized into either exercise (n = 12) or passive sitting conditions. A repeated measure (RM) ANOVA showed that psychological withdrawal symptoms (a measure of distress) were significantly exacerbated after temporary abstinence and then again after the environmental manipulation for all participants (p < .0001, η² = .50). Furthermore, a treatment by time RM ANOVA revealed decreases in psychological withdrawal symptoms for only the exercise condition (p < .001, η² = .42). A treatment by time RM ANOVA also revealed craving reductions for only the exercise condition (p < .0001, η² = .82). Exercise had no effect on ad libitum smoking. This is the first study to use a lab-based scenario with high ecological validity to show that an acute bout of exercise can reduce cravings following concurrent stressors. Future work is now needed where momentary assessment is used in people’s natural environment to examine changes in cigarette cravings following acute bouts of exercise.

Keywords: smoking, temporary abstinence, acute exercise, concurrent stressors
1. Introduction

Failure to cope with smoking-related and external stressors may lead to an increased likelihood of relapse and an eventual return to normal smoking behavior (Aveyard & West, 2007). A single bout of light-to-moderate intensity exercise has been shown to significantly reduce cravings in temporarily abstinent smokers (Daniel, Cropley, & Fife-Schaw, 2007; Elibero, Janse Van Rensburg, & Drobes, 2011; Faulkner, Arbour-Nicitopoulos, & Hsin, 2010). Two recent meta-analyses (Haasova et al., 2013; Roberts, Maddison, Simpson, Bullen, & Prapavessis, 2012) provide empirical evidence for acute exercise having a positive effect on cigarette cravings and withdrawal symptoms during abstinence. Moreover, exercise is more than a distraction from cravings and withdrawal symptoms, as benefits of exercise last after the bout is over (Daniel, Cropley, & Fife-Schaw, 2006; Ussher, West, Doshi, & Sampuran, 2006). In addition, treatment expectations are unrelated to reductions in cravings and withdrawal symptoms following an acute bout of exercise (Daniel et al., 2007; Harper, Fitzgeorge, Tritter, & Prapavessis, 2013).

In order to further evaluate the effects of acute exercise for managing cravings and withdrawal symptoms, we argue it is crucial to determine the value of exercise using a cue-elicited smoking research paradigm. Cue-elicited research is originally derived from classical conditioning (Tiffany, 1995). Addicts are exposed to cues related to their addiction (e.g., drug paraphernalia) and psychological and/or physiological responses are measured. Generally, responses are measured through self-report using a measure of craving or desire for the drug. A meta-analysis conducted by Carter and
Tiffany (1999) suggests that the cue-elicited research paradigm is useful for basic addiction research and robust for psychological responses.

Taylor and Katomeri (2007) showed that a single bout of exercise could moderate cue-elicited cravings and withdrawal symptoms during a temporary quit period. Following a 2-hour abstinence period, participants were randomized to either a 15-minute brisk walk or passive condition. Both groups completed a set of tasks (i.e., stressors) following their respective treatment conditions. Exercise attenuated strength of desire to smoke, tension, poor concentration and stress in response to a lit cigarette, but had minimal effects on cravings and withdrawal symptoms in response to other stressors (i.e., Stroop task and speech task). Moreover, participants who exercised lit up a cigarette (ad libitum smoking) 57 minutes later than passive controls after leaving the laboratory.

While the study conducted by Taylor and Katomeri (2007) advances knowledge, the cue-elicited stressors were presented after the treatment condition. A more ecologically valid scenario would be to present the stressors immediately after a period of temporary abstinence. This situation mirrors a real life situation where smokers often have to simultaneously deal with cue-elicited stressors along with the stressors associated with abstaining from smoking. The combined effects of both stressors may be greater than the effects experienced when a smoker only engages in a temporary quit attempt. Specifically, the severity of the psychological withdrawal symptoms (a measure of distress) will likely be higher for those experiencing concurrent stressors. This in turn will likely make it more challenging for treatments like exercise to work in attenuating cravings.
Hence, the purpose of this study is to examine the effect of an acute bout of moderate-intensity exercise on cigarette cravings and ad libitum smoking following exposure to concurrent stressors (temporary smoking abstinence period and environmental manipulation—cognitive Stroop task + cue-elicited smoking stimuli). It was hypothesized that all participants would experience an increase in psychological withdrawal symptoms following temporary abstinence (stress condition 1) and a further increase in symptoms following environmental manipulation (stress condition 2). However, it was expected participants who exercised would show lower psychological withdrawal symptoms after treatment compared to passive controls. It was also predicted that, compared to passive controls, those who exercised would experience lower cravings and would take longer to light up their first cigarette following exposure to the concurrent stressors.

2. Materials and Methods

2.2 Design

This study used a stratified (age and sex), two-group (moderate intensity exercise and passive sitting) randomized controlled trial design. A computer-generated numbers table accomplished randomization for age (18-30 years, 31-50 years, 51-65 years) and sex (male, female). Participants were blinded to the existence of a second condition.

2.2.1. Sample size calculation. Previous research has shown Shiffman-Jarvik withdrawal symptoms psychological subscale scores of 2.55 at baseline increases to 3.72 (standard deviations not reported by authors) after a 13-16 hour period of
temporary abstinence (Canamar & London, 2012). Moreover, no previous research exists to inform power analysis for psychological symptoms after temporary abstinence and environmental manipulation (concurrent stressors). It is anticipated that the additional environmental stressor will likely elevate psychological symptoms from 3.72 to 4.2 ($SD = 1.0$). Hence, in order to be adequately powered (.80) to detect this difference, a sample size of 25 smokers is needed with the alpha set at 0.05. Our sample size calculation for strength of desire to smoke (primary outcome) was based on previous research (Roberts et al., 2012) that showed a difference of -2.41 ($SD = 2.0$) between exercise and passive conditions within 5 minutes of post-treatment. Thus, a sample of 11 smokers per group was needed to detect similar differences in this variable at a power of .80 with an alpha of .05 (SamplePower 3, IBM-SPSS).

2.3 Participants

After receiving ethical approval from the host university, healthy male and female smokers were recruited using advertisements in local newspapers and online classifieds in the local community. Smokers were eligible if they were 18 – 65 years of age; smoked an average of 10 cigarettes or more per day for at least two years; and had no contraindications to physical activity as determined by the Physical Activity Readiness Questionnaire (Thomas, Reading, & Shephard, 1992). Females who were pregnant or intending on becoming pregnant before completion of the study and those who were unable to temporarily abstain from smoking for 18 hours were ineligible. Thirty-six participants had given consent and were randomized, but participants were ineligible
due to an inability to abstain for 18 hours \((n = 5)\), lost contact \((n = 4)\), or lost interest \((n = 2)\). Twenty-five participants satisfied all criteria and completed the study.

2.4 Measures

2.4.1 Psychological distress (fidelity check). Psychological distress was measured with the Shiffman-Jarvik withdrawal scale (Shiffman & Jarvik, 1976). Five items were measured on a 7-point Likert scale anchored at 1 *definitely do not feel* and 7 *definitely feel*. Only this subscale of the Shiffman and Jarvik inventory was administered, as it represented items (e.g., "*do you feel more tense than usual?*"") that directly assessed psychological distress and would likely change from baseline to post-abstinence (stress condition 1) and then again from post-abstinence to post-environmental manipulation—cognitive Stroop task + cue-elicited smoking stimuli (stress condition 2). Internal consistency (Cronbach’s alpha) for the subscale was acceptable: baseline \(\alpha = .73\); post-abstinence \(\alpha = .82\); post-environmental manipulation \(\alpha = .80\); 2-minutes post-treatment \(\alpha = .76\).

2.4.2 Cravings (primary outcome). Cigarette cravings were measured using the strength of desire to smoke scale (West, Hajek, & Belcher, 1989). This scale uses a single item ‘How strong is your desire to smoke right now?’ and is scored on a 7-point Likert scale from 1 *not at all* to 4 *somewhat* and 7 *extremely*. A single-item measure of cravings is considered appropriate for assessing reactivity in situations where cravings are expected to be high, and there are a large number of repeated assessments over a short period of time (Sayette et al., 2000).
2.4.3 Time to first cigarette (secondary outcome). Ad libitum smoking was calculated as the difference in time (min) from leaving the laboratory after post-abstinence assessment to the time (min) of their first cigarette. This method is consistent with previous research in acute smoking research designs (Taylor & Katomeri, 2007). Participants either emailed the study’s email address or called and left a message on a secure phone line with the time and date of their first cigarette.

2.5 Treatment

2.5.1. Moderate intensity exercise. Participants randomized to this condition completed a single, 15-minute bout of moderate intensity exercise. Exercise consisted of a 2-minute warm-up, followed by 10 minutes of walking at a rate, which allowed participants to reach 45% to 68% of their heart rate reserve, and then a 3-minute cool down on a treadmill (Woodway, Waukesha, WI). Heart rate was monitored using a Polar RS100 heart rate monitor.

2.5.2. Passive sitting. Participants were asked to sit alone in a quiet room for 15 minutes.

2.6 Procedure

Eligible participants were asked to complete a baseline assessment (Visit 1). Baseline assessments included verification of smoking status using the piCO+™ Smokerlyzer® (Bedfont Scientific Ltd., Kent, England) carbon monoxide (CO) monitor. A breath CO reading of greater than 10 parts per million (ppm) was the threshold for inclusion, as used in previous research (Daniel et al., 2007). Resting heart rate, height
and weight were recorded for all participants. Next, participants completed the following questionnaires: (1) demographic information; (2) the 7-day Physical Activity Recall Questionnaire (Blair et al., 1985); (3) Fagerstrom Test for Cigarette Dependence (FTCD; Heatherton, Kozlowski, Frecker, & Fagerström, 1991); (4) cigarette cravings; (5) Shiffman-Jarvik psychological withdrawal symptoms subscale; and (6) smoking ladder (Biener & Abrams, 1991).

Post-abstinence assessments (Visit 2) were scheduled approximately one week after baseline. Prior to the second assessment, participants were asked to abstain from smoking (stress condition 1) and common forms of substance dependency (i.e., caffeine and alcohol—to ensure clean responses to both exercise and questionnaires) for 18 hours. Temporary abstinence was verified using expired CO (<10ppm). Next, participants assessed their strength of desire to smoke (cravings) and completed the Shiffman-Jarvik withdrawal subscale (psychological withdrawal symptoms).

All participants then performed the modified Stroop task (Wallace & Baumeister, 2002) and cue-elicited smoking stimuli (stress condition 2). The modified Stroop task incongruently matches words and printed ink color, whereby participants are required to say aloud the color of the printed ink and not the word (Williams, Mathews, & MacLeod, 1996). However, when participants came across words printed in red ink they were required to override the first rule and say the actual word itself. Next, researchers asked participants to place a cigarette of their preferred brand on the desk in plain sight (cue-elicited smoking stimulus) before completing the Stroop task. Also, they were informed that for every error incurred, one dollar would be subtracted from their total 15 dollar compensation (augmentation of stress condition 2). Participants performed this
task for 5 minutes, while error rate and progress (i.e., number of prompts completed) were recorded. After the environmental manipulation, participants completed psychological withdrawal symptoms and cravings measures.

During both treatment conditions, participants’ cigarette cravings were assessed at 5-minute intervals. Two minutes after participants completed their treatment, their strength of desire to smoke was assessed for a final time. Prior to completing the study, participants were asked to report the time of their first cigarette after leaving the laboratory. Researchers contacted participants if they did not respond within three hours.

2.7 Statistical Analyses

Due to the strict requirements of the study, a 30% attrition rate was found. Hence, an attrition analysis comparing ineligible and eligible participants on baseline demographic and smoking characteristic variables was conducted using one-way analyses of variance (ANOVAs). For eligible participants, group equivalency at baseline was examined using ANOVAs. An independent t-test was conducted for post-abstinence CO scores measured at Visit 2. As a fidelity check, a repeated measures ANOVAs and follow-up post-hoc paired t-tests were used to determine if psychological symptoms increased from baseline to post-abstinence (stress condition 1) and then again from post-abstinence to post-environmental manipulation (stress condition 2). A group (exercise vs. passive control) by time (post abstinence/environmental manipulation and immediately post treatment) repeated measures ANOVA was used to determine if those who exercised had decreased their psychological withdrawal
symptoms compared to passive control. For primary outcome, a group (exercise vs. passive control) by time (baseline, post-abstinence, post-environment manipulation, 5 minutes, 10 minutes, 15 minutes into treatment and immediately post-treatment) repeated measures ANOVA was used to determine an interaction effect for cravings. For secondary outcome, an independent t-test was conducted for ad libitum smoking comparing means between groups. Finally, bivariate correlations were conducted to establish whether relationships existed between variables. Level of significance was accepted at $p < .05$ for all statistical tests. Data were analyzed using SPSS for Windows version 21 (IBM, United States).

3. Results

With the exception of resting heart rate, there were no significant differences on any baseline measures between eligible and ineligible participants (p-values ranged between .37 and .96). Eligible participants’ demographic information and smoking characteristics are presented in Table 1. Groups did not differ on any baseline characteristics. In addition, moderate intensity exercise ($M = 5.5, SD = 2.5$) and passive control ($M = 6.1, SD = 2.4$) did not differ on CO scores measured post-abstinence (Visit 2), $t (23) = -.589, p > .05$.
Table 1

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Experimental (n = 12)</th>
<th>Control (n = 13)</th>
<th>F</th>
<th>η²</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>35.7 (14.9)</td>
<td>39.1 (15.2)</td>
<td>.320</td>
<td>.01</td>
<td>.57</td>
</tr>
<tr>
<td>Female gender, number (percent)</td>
<td>7 (58.3)</td>
<td>7 (53.8)</td>
<td>.047</td>
<td>.002</td>
<td>.83</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>27.6 (6.49)</td>
<td>24.2 (4.83)</td>
<td>2.36</td>
<td>.09</td>
<td>.14</td>
</tr>
<tr>
<td>Moderate/ vigorous intensity activity in the past week (hours)(^a)</td>
<td>2.71 (1.65)</td>
<td>2.31 (1.57)</td>
<td>.717</td>
<td>.01</td>
<td>.58</td>
</tr>
<tr>
<td>Resting heart rate (bpm)</td>
<td>87.0 (13.9)</td>
<td>83.5 (8.98)</td>
<td>.556</td>
<td>.02</td>
<td>.46</td>
</tr>
<tr>
<td>Smoking Status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years smoked</td>
<td>17.8 (13.3)</td>
<td>21.2 (14.7)</td>
<td>.366</td>
<td>.02</td>
<td>.55</td>
</tr>
<tr>
<td>Cigarettes per day</td>
<td>13.0 (5.95)</td>
<td>15.2 (6.08)</td>
<td>.796</td>
<td>.03</td>
<td>.38</td>
</tr>
<tr>
<td>FTCD</td>
<td>3.58 (2.07)</td>
<td>4.08 (2.66)</td>
<td>.265</td>
<td>.01</td>
<td>.61</td>
</tr>
<tr>
<td>Expired CO (ppm)</td>
<td>17.0 (7.04)</td>
<td>22.2 (9.67)</td>
<td>2.35</td>
<td>.09</td>
<td>.14</td>
</tr>
<tr>
<td>Smoking ladder</td>
<td>5.66 (1.07)</td>
<td>6.11 (1.53)</td>
<td>.709</td>
<td>.03</td>
<td>.41</td>
</tr>
<tr>
<td>Strength of desire</td>
<td>3.75 (1.49)</td>
<td>2.85 (1.86)</td>
<td>1.78</td>
<td>.07</td>
<td>.20</td>
</tr>
<tr>
<td>Psychological withdrawal symptoms</td>
<td>2.96 (.893)</td>
<td>2.69 (1.13)</td>
<td>.449</td>
<td>.02</td>
<td>.51</td>
</tr>
<tr>
<td>Length of smoking abstinence (hours)</td>
<td>18.1 (.370)</td>
<td>17.8 (1.19)</td>
<td>.569</td>
<td>.03</td>
<td>.46</td>
</tr>
<tr>
<td>Days between visits</td>
<td>6.40 (1.83)</td>
<td>6.92 (1.44)</td>
<td>.546</td>
<td>.03</td>
<td>.47</td>
</tr>
</tbody>
</table>

Note. BMI = Body Mass Index; bpm = beats per minute; FTCD = Fagerstrom Test for Cigarette Dependence; CO = carbon monoxide; ppm = parts per million. \(^a\)7-day Physical Activity Recall Questionnaire.
3.1 Fidelity Check

3.1.1. Exercise. All participants adhered to the prescribed moderate intensity prescription for 10 minutes at 45-68% of their heart rate reserve.

3.1.2. Concurrent stressors. A significant time effect was found for psychological withdrawal symptoms, $F(2, 23) = 24.3$, $p < .0001$, $\eta^2 = .50$. *Post-hoc* paired t-tests showed an increase in psychological symptoms from baseline to post-abstinence (stress condition 1), $t(24) = -4.23$, $p < .0001$, $\eta^2 = .43$ and from post-abstinence to post-environment manipulation (stress condition 2), $t(24) = -2.65$, $p = .01$, $\eta^2 = .23$ (Figure 1).

3.1.3. Treatment effect for reducing stressors. A significant group by time interaction effect was found, $F(1, 23) = 16.7$, $p < .001$, $\eta^2 = .42$, where those in exercise condition decreased their psychological withdrawal symptoms compared to their passive control counterparts (Figure 1).
Figure 1. Increase in psychological withdrawal symptoms (stress) from (1) baseline to (2) post-abstinence and then again from post-abstinence to (3a) post-environmental manipulation. The effect of exercise on psychological withdrawal symptoms measured at pre-treatment (3b) and 2-minutes post-treatment (4). Means and standard error are presented; asterisks indicate significant differences between groups at specific time points (p < .05).
3.2 Main Analyses

3.2.1. Cravings. A significant group by time interaction effect, $F(6, 18) = 13.4$, $p < .0001$, $\eta^2 = .82$, was found for strength of desire to smoke. Post-hoc t-tests showed that the exercise group reported significantly lower craving scores at all post concurrent stressor time points compared to their passive control counterparts (Figure 2).
Exercise and Concurrent Stressors

Figure 2. The effect of exercise on strength of desire to smoke compared to passive control (mean and standard error). Time points are baseline (1); post-abstinence (2); post-environment manipulation (3); during treatment – 5 minutes (4); during treatment – 10 minutes (5); end of treatment – 15 minutes (6) and immediately post-treatment (7). Means and standard error are presented; asterisks indicate significant differences between groups at specific time points (p < .05).
3.2.2. Ad libitum smoking. Independent t-test revealed no significant difference for ad libitum smoking for moderate intensity exercise (M = 12.7, SD = 9.52) and passive control (M = 14.1, SD = 12.6), t (17) = -.262, p = .80, η² = .003.

3.2.3. Relationships among the variables. There was no significant correlation between strength of desire to smoke (cravings) measured post-treatment and ad libitum smoking (Table 2). No significant correlations were found between ad libitum smoking and demographic variables, smoking status, and post-treatment psychological withdrawal symptoms. Post-treatment psychological withdrawal symptoms were significantly correlated with post-treatment cravings, cigarettes smoked per day, and FTCD scores. Cigarettes smoked per day were significantly correlated with FTCD scores.
Table 2

Correlations between ad libitum smoking, key demographic and smoking status variables, and post-treatment psychological withdrawal symptoms and strength of desire to smoke (cravings)

<table>
<thead>
<tr>
<th>Variable</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ad libitum</td>
<td>—</td>
<td>.021</td>
<td>.214</td>
<td>.055</td>
<td>-.01</td>
<td>-.273</td>
<td>-.296</td>
<td>-.242</td>
<td></td>
</tr>
<tr>
<td>2. Age</td>
<td>—</td>
<td>—</td>
<td>.956*</td>
<td>.504</td>
<td>.297</td>
<td>.314</td>
<td>.045</td>
<td>.063</td>
<td>-.273</td>
</tr>
<tr>
<td>3. Years Smoked</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>.438*</td>
<td>.280</td>
<td>.258</td>
<td>.060</td>
<td>.050</td>
<td>-.388</td>
</tr>
<tr>
<td>4. CPD</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>.444*</td>
<td>-.773*</td>
<td>.030</td>
<td>.559*</td>
<td>.139</td>
</tr>
<tr>
<td>5. CO</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>631*</td>
<td>.281</td>
<td>.283</td>
<td>.207</td>
</tr>
<tr>
<td>6. FTCD</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>.048</td>
<td>.470*</td>
<td>.301</td>
</tr>
<tr>
<td>7. SL</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>.005</td>
<td>.022</td>
</tr>
<tr>
<td>8. PWS</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>.465*</td>
</tr>
<tr>
<td>9. SoD</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Note. CPD = cigarettes smoked per day, CO = carbon monoxide, FTCD = Fagerstrom Test for Cigarette Dependence, SL = smoking ladder, PWS = psychological withdrawal symptoms, SoD = strength of desire to smoke (cravings). Asterisk indicates significant relationship ($p < .05$). The large negative relationship found between CPD and FTCD is counterintuitive. Smokers in this study were not highly dependent on cigarettes (as reflected by their modest FTCD scores) and higher scores within this range reflect fewer cigarettes smoked.
4. Discussion

The present study examined the effect of a single bout of exercise on strength of desire to smoke (cravings) and ad libitum smoking following concurrent stressors. Results showed that following concurrent stressors (i.e., temporary abstinence and environmental manipulation—Stroop cognitive task + cue-elicited smoking stimuli), significant reductions in cravings were seen for those in the moderate intensity exercise condition, but not for those in the passive control condition. There were no significant differences between groups for ad libitum smoking.

Psychological withdrawal symptoms of the Shiffman-Jarvik (1976) withdrawal scale were used as a surrogate measure of stress as items were salient to distress and likely to change in response to both stressor conditions (i.e., temporary abstinence and environmental manipulation—Stroop cognitive task + cue-elicited smoking stimuli). We found a significant increase in psychological withdrawal symptoms following temporary abstinence and again following the environmental manipulation (see Figure 1). Furthermore, we found a significant decrease in these symptoms for only those in the exercise arm following the concurrent stressor condition (see Figure 1). Using a model of self-control strength (Baumeister, 2003), these data taken together, suggest that self-control strength was being depleted following concurrent stressors and then replenished following exercise. This potential mechanistic line of investigation deserves future research attention.

Insofar as cravings are concerned, heightened and sustained craving scores prior to treatment supports the tenet that concurrent stressors had an impact on them (see Figure 2). There was a 2.58 (46%) to 2.75 (49%) reduction in strength of desire to
smoke from concurrent stressors to during exercise treatment (i.e., 5, 10 and 15 minutes), whereas the point reduction from concurrent stressors to immediately post treatment was 2.08 (37%). These reductions are in line with other studies (see Haasova et al., 2012 and Roberts et al., 2012). Overall, our findings are clinically relevant as they show that exercise (a non-pharmacological agent) can provide immediate craving relief in smokers experiencing highly challenging and ecologically valid scenarios (i.e., environmental stressors occurring at the same time as stressors experienced from abstaining from smoking).

For individuals unable or unwilling to quit smoking, delaying time between cigarettes may reduce the number of cigarettes smoked and harm inflicted (deRuiter & Faulkner, 2006). We found that exercise had no effect on ad libitum smoking, compared to passive sitting. Measuring ad libitum smoking in a similar manner as the present study, Taylor & Katomeri (2007) found that, compared to controls, those who exercised waited an average of 57 minutes longer before lighting up their next cigarette. One plausible explanation is that concurrent stressors mitigated the residual effects of post exercise craving reductions, which in turn made time to lighting up one’s first cigarette essentially the same for both groups. Although we have no repeated measurement of post exercise craving data, we suspect that the single 2 minute post exercise data point assessed (see Figure 2) reflects the start of an upward movement in cravings for the exercise group because of the concurrent stressors they experienced prior to exercise. Previous studies (Daniel et al., 2006; Ussher et al., 2006) have shown craving reduction effects lasting up to 30 minutes post exercise following temporary abstinence only. Experimental work that assesses post-exercise cravings and ad
libitum smoking following concurrent stressors is warranted. This study is not without limitations. Researchers did not examine the duration of the effects of exercise on cravings post-treatment, which has been examined in previous studies. Next, the study was conducted in a laboratory, under controlled conditions and included individuals who were able to temporarily abstain from smoking for a prolonged period of time. Hence, inferences drawn from the study cannot be applied to a more naturalistic setting and all tobacco users. Finally, due to the small sample size, the findings cannot be generalized to smokers with a different demographic and smoking profile.

4.1. Conclusions. This is the first study to use a more valid lab-based scenario and show that a single bout of moderate intensity exercise reduces cravings following concurrent stressors. Exercise had no effect on ad libitum smoking. Future work is now needed where momentary assessment is used in participants’ natural environment to examine changes in cigarette cravings following acute bouts of exercise.
References

Drummond, D. C., Tiffany, S. T., Glautier, S. & Remington (Ed.), Addictive
Behavior: Cue exposure theory and practice (pp. 47–71). Oxford: John Wiley &
Sons.

exercise on desire to smoke and tobacco withdrawal symptoms. Human
Psychopharmacology, 21(1), 39–46. doi: 10.1002/hup.744

Wallace, H. M., & Baumeister, R. F. (2002). The Effects of Success versus Failure
Feedback on Further Self-Control. Self and Identity, 1, 35–41.

predictor of outcome of an attempt to quit smoking. Psychological Medicine, 19(4),

Williams, J. M., Mathews, A., & MacLeod, C. (1996). The emotional Stroop task and
Highlights
Exercise provides immediate craving relief in smokers facing concurrent stressors
Exercise has no effect on ad libitum smoking
There is indirect evidence that concurrent stressors and exercise affect self-control strength
Concurrent stressors deplete self-control strength
Exercise replenishes self-control strength